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“If I have seen further it is by standing on the shoulders of giants.”

Isaac Newton



ARIZONA STATE UNIVERSITY

Abstract

Relaxation Models for Self-Regulated Coarse-Graining: Application to

Generalized Langevin Equations and Brownian Motion

by Eron Ristich

The timescale of a simulation, determined by its size of time step, is an incredibly important

consideration for resolving quickly varying dynamics. Indeed, if one chooses an observation

timescale larger than the fastest forces in a dynamical system, the intricate details produced by

that force’s fluctuations are lost. As such, for large time steps, we require integrators that are

capable of capturing the effect of these missed forces, perhaps in a statistical sense if not exactly.

This problem is difficult to solve in general. As such, for simulations where these high frequency

details do not need to be resolved, lower order models must be employed that resolve the overall

effect of these high frequency details by construction. A representative example of this is the

modeling of molecular dynamics and Brownian motion. High order models of Brownian motion,

such as the generalized Langevin equations, are computationally infeasible when one wants to

resolve the dynamics of, for example, a pollen particle in water. A more reasonable choice of

model might be the Langevin equations or even further, the overdamped Langevin equations.

As a case study, by posing the generalized Langevin equations as a relaxation system, we show

how in choosing the size of time step, we automatically reduce to the effective model, without

ever explicitly choosing the model used.

https://asu.edu
eristich@asu.edu
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Chapter 1

Introduction

The classical mathematical model of diffusion, Brownian motion, is a popular set of equations

representing the path of a particle as a random walk within a fluid domain. However, the

introduction of a random variable to equations of motion came with a disclaimer that there

exist actions that occur on too high of a frequency to feasibly resolve. To what extent are

important dynamical properties smoothed over when we make this simplifying assumption?

What kind of information can we recover using these limited models?

1.1 Brownian Motion

In the case of so-called Brownian dynamics, we can physically think of this randomness as a

consequence of the particle’s high collision frequency with other particles that effectively ran-

domizes the Brownian particle’s velocity after each collision. This, in particular, handles the

case of a large particle moving among many smaller ones, called bath or solvent particles. One

can imagine how such a particle might experience countless small impulses that effectively ran-

domize its motion. Consequently, Brownian motion is often referred to as – and simulated as – a

random walk. For example, figure 1.1a shows a blown up example of a large particle surrounded

by bath particles and travelling in two dimensions that is undergoing velocity randomization due

to the numerous collisions with the bath particles. Figure 1.1b then shows how the trajectory

of the tagged particle might look if we observed it for a considerable amount of time.

Although the motion of these particles are random and their individual trajectories are

not necessarily useful, the mean behavior of many particle trajectories provides insight into the

macroscopic behavior of fluids. Indeed, as time increases, a dense collection of particles will tend

to spread evenly throughout the bath. This process is a precursor to a concept called diffusion,

which describes the general tendency of particle density heading towards equilibrium across

1
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(a) A particle undergoing Brownian motion,
such as a pollen particle in water. Here, the
large red particle is jostled by many smaller

bath particles

(b) Dense sampling of the path of a particle
undergoing 2D Brownian motion

Figure 1.1: Examples of Brownian motion

space. For example, diffusion is a critical process for biological systems, and is a fundamental

transport mechanism for macromolecules in cells [1].

1.2 Langevin Dynamics

Such a model is acceptable when inertial effects are negligible, as a particle with little mass

is more prone to abrupt changes in momentum due to the perturbations induced by the bath

particle. For a heavy particle, a more general model, known as Langevin dynamics, provides a

more accurate description of the motion. The physical interpretation of these equations reduces

to a drag force preserving inertia, and a random force that statistically models the collective

result of collisions with the solvent particles of the bath. For example, figure 1.2a shows a

blown up example of a large and heavy particle surrounded by several bath particles. Despite

the numerous perturbations applied to this heavy particle, its direction of motion is relatively

unchanged. Similarly, at short time scales, particles evolving under Langevin dynamics tend to

maintain their direction due to their inertia. Figure 1.2b then shows how the trajectory of the

tagged particle might look if we observed it for a considerable amount of time. In particular,

compared to figure 1.1b, the particle undergoing Langevin dynamics visibly appears to have a

more continuous path, which is a consequence of its inertia.

One might imagine, however, that if the drag force were high enough, a particle’s velocity

would be solely determined by the random fluctuations imparted to it by the bath. Indeed, this
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(a) A particle undergoing Langevin dynam-
ics, which largely tends to preserve its inertia
despite many small perturbations due to the

bath particles

(b) Dense sampling of the path of a particle
undergoing underdamped Langevin dynamics

Figure 1.2: Examples of Langevin dynamics

is the case; when Langevin dynamics are overdamped, the model reduces to that of Brownian

motion. This kind of relaxation can actually occur in another way. If our observation time scale

– the frequency at which we observe the state of a tagged particle – is large, our observations

might demonstrate that a particle almost instantly relaxes to the equilibrium solution, and as

such, appears to have the form of a random walk.

1.3 Generalized Langevin Dynamics

When the characteristic time scale of collisions between a tagged particle and the bath particles

become similar – i.e. the rates at which particles collide with each other and the rate at which

they collide with the tagged particle – an even higher order model is needed. Consider, for

example, a particle moving in a viscoelastic fluid, which is a fluid that has viscous and elastic

properties, in the sense that it resists shear flow, but also tends to return to its original form

after stress is removed. This particle imparts some stress on the fluid which propagates to other

bath particles before the viscoelastic response is later experienced by the tagged particle itself.

This effect that is delayed in time requires a term that is a function of a particle’s past velocities.

As such, in generalized Langevin dynamics, an additional memory kernel is introduced which

is a convolution of the past velocities of the particle, and is capable of modeling these complex

reactionary effects from the bath.
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(a) A particle undergoing superdiffusive gen-
eralized Langevin dynamics, where thick blue
lines represent the time delayed response of
the bath, boosting the motion of the particle

(b) A particle undergoing subdiffusive gener-
alized Langevin dynamics, where thick blue
lines represent the time delayed response of

the bath, acting as a drag force

Figure 1.3: Examples of generalized Langevin dynamics

Visually, the trajectories of such a particle are often somewhat indistinguishable from the

trajectory of a standard Langevin particle. Further, the form of the particle trajectories are

heavily dependent on the type of memory kernel, which may function to provide boosts to the

particle’s velocity (superdiffusive), or serve as an additional drag force (subdiffusive). Figure

1.3a shows an example of a particle that moves due to superdiffusive generalized Langevin

dynamics, where the viscous response of the bath due to the particle’s past motion causes a

stress in the direction of motion, effectively boosting the tagged particle’s velocity. Figure 1.3b

shows an example of a particle that moves due to subdiffusive generalized Langevin dynamics,

where the elastic response of the bath due to the particle’s past motion causes a stress counter

to the direction of motion, effectively acting as a drag force to the tagged particle’s velocity.

Many researchers have developed numerical integration schemes for the GLE, each of which

handle the integration of the memory kernel slightly differently. Traditionally, handling the

memory kernel term requires storing a moving history of particle velocities and numerically

integrating over them, or storing sequences of random numbers to handle the random force

with non-trivial correlations in time [2–4]. Often, this leads to large memory requirements or

computational expense.

For memory kernels in the form of a power-law [5], it has been recently shown that the

generalized Langevin equations can be numerically integrated in a computationally and spatially

efficient way [6, 7]. However, these algorithms, as we will show, have errors that grow as the

size of time step grows.
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1.4 Self-regulated Coarse-graining

All these models of Brownian motions model the same macroscopic behavior in the sense that

their long time behavior recovers certain properties of the particle’s motion, such as the long

time diffusion coefficient. Indeed, higher order models such as Langevin dynamics or generalized

Langevin dynamics improve the descriptions of the particle trajectories at fast time scales.

However, a sparse sampling in time of these trajectories effectively steps over the fast time

scale dynamics resolved by these higher order models, and effectively removes the need to have

resolved those fast time scales in the first place. We take advantage of this fact to allow the

time step to choose the effective model. Simply, as the time step grows, our algorithm no

longer resolves fast time scale dynamics, and instead steps over them in a statistical sense as

a lower order model might do. As such, in this thesis, we construct a novel self-regulating

algorithm for Brownian motions whose mathematical formulation reduces, as a function of time

step, from generalized Langevin dynamics to Langevin dynamics and finally to overdamped

Brownian motion, all while preserving the correct diffusion coefficient and only resolving the

appropriate time scales.

In chapter 2, we provide relevant background information about the generalized Langevin

equations, and derive an extended Markovian embedding of the equations using a Prony series.

In chapter 3 we compare and derive popular alternative integrators for the GLE, propose our

integrator, and derive an expression for the time step rescaling parameter. In chapter 4, we

conduct an analytical error analysis and numerically evaluate our integrator in the zero po-

tential case and in a harmonic oscillator potential, comparing our method with other popular

integrators. Our findings and directions for future work are summarized in chapter 5.



Chapter 2

Background and Theory

In classical physics, dynamics of a system are described by Newton’s 2nd law of motion, which

describe the motion of particles as a function of their mutual and external interactions. Such

systems often involve a large number of particles, which makes obtaining a brute-force solution of

these classical equations analytically and computationally intractable. A such, it is common to

perform a dimensionality reduction to obtain models that yield tractable analysis, often referred

to as a coarse-graining. Many popular equations of motion are found in physics and chemistry,

including continuum models such as the Navier-Stokes equations, kinetic rate equations for

chemical reactions, or the equations of equilibrium thermodynamics. Indeed, Brownian motion

and Langevin dynamics are also coarse-grained models which model the motion of a particle

immersed in a fluid. The generalized Langevin equation, while still a coarse-grained model, can

actually be used as the basis for a quite general, versatile, and robust description of complex

systems in physics and chemistry.

While there is no general means by which one can identify an optimal coarse-grained model

for a classical system, many powerful methods have been developed to construct these coarse-

grained methods in a principled manner. One such method is the Mori-Zwanzig projection

operator technique, which, roughly speaking, involves projecting the full dynamical coordinates

of a system onto a subset of degrees of freedom of interest and gathering the remaining degrees

of freedom into a compact statistical description that takes the form of a stochastic force [8, 9].

In this way, the projection operator technique can be used to produce the generalized Langevin

equations, where the degrees of freedom of interest are the position and velocity of a tagged

particle, and the remaining degrees of freedom belong to the bath. Notably, the degrees of

freedom of interest do not have to be grouped in this way, and could be collective coordinates of

many particles, or a vector field of such particles, thus providing a hydrodynamic description.

For simplicity, however, we will discuss generalized Langevin dynamics primarily in the

context of a single particle immersed in a potentially complex fluid. In this representation,

6
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the trajectory of a single particle can be described by a memory kernel that accommodates for

Stokes drag and complex , a slowly varying external force term determined by the underlying

potential of the system, and a quickly varying stochastic force term that describes the dynamics

of the bath.

2.1 Background of Stochastic Dynamics Integrators

Classical algorithms for molecular dynamics simulations evaluate Newtonian dynamics using

general-purpose integrators such as position Verlet or Runge-Kutta, which are generally com-

putationally efficient as they require a minimal number of force evaluations per time step. How-

ever, such integrators are limited by the conditions of the systematic force term. For stochastic

equations of motion, the random force term constrains the time step by its velocity relaxation

time γ−1 [10], which is often a heavily restrictive condition, especially for systems that have

otherwise slowly varying potentials.

In 1982 and 1988, Van Gunsteren and Berendsen introduced two third-order integrators for

stochastic dynamics which lifted the restriction on time step to only that of the systematic force

term [10, 11]. Their work was motivated by existing third-order general integration methods,

position Verlet and leap-frog, to which their algorithms reduce to in the no-friction limit, γ = 0.

In particular they are able to lift this restriction by explicitly integrating the random force term,

splitting the force updates into a deterministic force update and a stochastic force update.

Integration of the generalized Langevin equations is more difficult, in part due to the

convolution integral for the drag term, requiring precise information about past velocities of the

system. To accomodate for that, in 1989, Smith and Harris proposed a numerical integrator

for the generalized Langevin equations that models the memory kernel as an autoregressive

stochastic recurrence relation, depending linearly on its previous values and a stochastic term

[2].

However, an even more complicated consequence of the memory kernel is the complex

correlations in time introduced by the stochastic term, which must necessarily satisfy the same

kernel over which the velocities are convolved. In 2013, Baczewski and Bond introduced an

extended variable formalism of the generalized Langevin equations that uses a positive Prony

series to deconstruct the memory kernel and the stochastic term into a discrete set of auxiliary

variables, which by construction satisfy the fluctation-dissipation relation. Their work has been

implemented into the LAMMPS code, which is an open source code for molecular dynamics

simulations.
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2.2 Relaxation Systems

Many physical systems, with perturbations of arbitrary size, will eventually, given enough time,

return to some equilibrium state, which is often independent of the initial perturbation. For

example, a damped harmonic oscillator will, over time, return to its equilibrium position. For

physical systems with known asymptotic behavior, we can guarantee that any integrator for

the system recovers that behavior. The primary concern is the extent of this correction. How

can we use a relaxation method to recover the correct asymptotic behavior while preserving the

dynamics?

2.2.1 Deterministic Relaxation Systems

As a motivating example, consider a particle with a simple linear drag force

ẋ = v(t) (2.1a)

v̇ = −γv(t) +
1

m
f(t) (2.1b)

For general integrators, there are time step restrictions introduced both due to the drag term,

−γv(t), and the force term, 1
mf(t). Note that this is in the form of a relaxation system, as after

some perturbation the drag term tends to pull the particle towards 0 velocity over time.

In particular, in the overdamped regime where inertial effects are near negligible, the

equations of this particle reduce to

ẋ =
1

γm
f(t) (2.2)

Typically, this form arises in the zero-mass or inertialess limit, having mv̇ = 0 [12], where we

substitute a rescaled friction coefficient ζ = γm. Alternatively, if we consider the limit where

γt is large, we recover the same overdamped dynamics. The exact solution of velocity has

ẋ = v(t) = v(0)e−γt +
1

γm
f(t) (2.3)

which, in the limit of γt large has the same form as 2.2. We show that this limit can be recovered

by an implicit integrator such as the backward Euler method by allowing the time step to grow

such that γ∆t is large.

In backward Euler, we integrate equations 2.1a and 2.1b as

vn+1 = vn − γ∆tvn+1 +
∆t

m
f(t) (2.4a)

xn+1 = xn +∆tvn+1 (2.4b)
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which gives us an expression for vn+1 as

vn+1 =
vn + ∆t

m f(t)

1 + γ∆t
(2.5)

In the limit as ∆t grows large and under the assumption that f(t) is slowly varying, this reduces

to

vn+1 ≈ f(t)

γm
(2.6)

which exactly corresponds to the overdamped equations.

2.2.2 Stochastic Relaxation Systems

For a stochastic relaxation system, simply taking a large ∆t does not recover the overdamped

limit. Consider a particle whose dynamics are governed by the Langevin equation

ẋ = v(t) (2.7a)

v̇ = −γv +
1

m
f(t) +

√
2γkBT

m
W (t) (2.7b)

where W is a white noise term called a Wiener process with 0 mean and units of time−1/2,

satisfying ⟨W (t)W (t′)⟩ = δ(t− t′).

The overdamped limit of this set of equations, obtained again in the zero-mass or inertialess

limit, is

ẋ =
1

γm
f(t) +

√
2kBT

γm
W (t) (2.8)

which corresponds to Brownian motion, where we can write the friction coefficient as ζ = γm.

If we consider a backward Euler-Maruyama integrator, we integrate equations 2.7a and

2.7b as

vn+1 = vn − γ∆tvn+1 +
∆t

m
f(t) +

√
2γkBT∆t

m
N (t) (2.9a)

xn+1 = xn +∆tvn+1 (2.9b)

where we note the
√
∆t term in the random variable arises because ∆N n = N n+1 − N n is a

Gaussian random variable with zero mean and ∆t variance [13]. See the description of Wiener

processes in appendix A. This gives us an expression for vn+1 as

vn+1 =
vn + ∆t

m f(t) +
√

2γkBT∆t
m N (t)

1 + γ∆t
(2.10)
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In the limit as ∆t grows large and under the assumption that f(t) is slowly varying, this reduces

to

vn+1 ≈ 1

γm
f(t) +

√
2kBT

γm∆t
N (t) ≈ 1

γm
f(t) (2.11)

Here, the random variable under an update with large ∆t has 0 variance, quite unlike the

corresponding overdamped equation. Further, a näıve rescaling of the random variable with

a constant
√
∆t produces the incorrect short-time dynamics, despite having the correct over-

damped behavior. A well motivated correction arises from realizing that −γv + ξ is an exactly

solvable Ornstein-Uhlenbeck process, where ξ is the random force term. As shown by [14], there

exists a time step rescaling parameter for the deterministic force updates that allows for the

correct short-time dynamics while preserving the long-time statistics of the Langevin equations.

2.2.3 Rescaling Parameter for the Langevin Equations

In this section, we provide a brief overview of the work done by [14] to show how the introduction

of a time step rescaling parameter allows the diffusion coefficient – and other dynamical variables

– to be correctly resolved for arbitrarily large time steps.

The Langevin equation can be written as

ẋ = v (2.12a)

v̇ =
f(t)

m
− γv +

√
2γkBT

m
η(t) (2.12b)

where γ is a friction coefficient or collision frequency, f is some slowly – with respect to the

collision frequency – varying external force on the system, and η is a white noise process. The

authors choose a set of long-time desiderata from literature that their integrator must recover,

including the diffusion coefficient in zero-force and the mean squared velocity (i.e., the Maxwell

Boltzmann distribution). For an in depth discussion of these useful discrete-time integrator

properties, we refer the reader to [15].

In particular, by requiring the zero-force diffusion coefficient, Sivak et. al find that a simple

time step rescaling parameter applied to the deterministic updates of position and velocity allows

their family of integrators to recover nearly all of the desiderata they describe.

Their integrator can be described succinctly in the form of a stochastic Leapfrog integrator

v

(
n+

1

2

)
= θv

(
n− 1

2

)
+ (1 + θ)

b∆t

2

f(n)

m
+

√
(1− θ2)

kBT

m
N (2.13a)

x(n+ 1) = x(n) + b∆tv

(
n+

1

2

)
(2.13b)
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when positions and velocities at half steps can be safely ignored. Here, we have θ = e−γ∆t, and

the time step rescaling parameter b has the form

b =

√
2

γ∆t
tanh

γ∆t

2
(2.14)

In this form, discrete-time integration in the low friction limit γ∆t ≪ 1 has the value of b

approach 1, which, in the limit as ∆t approaches 0, is the expected result for the continuous-

time equations. In the high friction limit γ∆t ≫ 1, this has the form b =
√

2
γ∆t , which, when

substituted into the relaxation system described in section 2.2.2, yields a random variable with

the same variance as in the overdamped regime.

2.3 The Generalized Langevin Equations

The generalized Langevin equation (GLE), which can be derived from the Mori-Zwanzig pro-

jection operator formalism [8, 9], is a stochastic dynamical model that captures the behavior of

a wide range of diffusive phenomena. These equations extend the idea of Langevin dynamics,

where a tagged particle experiences forces from a surrounding bath at a high frequency, which

are represented in a statistical sense rather than deterministically resolved. The collective action

of the collisions of bath particles with the solute can be approximated by a linear combination of

deterministic and fluctuating forces, where the deterministic forces vary at a considerably lower

frequency than the stochastic forces. This model is sufficient when the characteristic time scale

of tagged particles is far larger than that of the solvent particles. The generalized Langevin

equation arises when this assumption no longer holds, and in turn introduces a random force

with non-trivial correlations with time. In this section, we review the generalized Langevin

Equations, and derive a Markovian embedding form of the positive Prony series, which will

then be the target for integration.

The non-Markovian form of the GLE is given by

ẋ = v(t) (2.15)

v̇ =
1

m
f(t)−

∫ t

0
K̂(t− t′)v(t′)dt′ + ξ̂(t) (2.16)

where, generally, m is the mass of the particle, K̂ is a memory kernel, and ξ̂ is a stationary

Gaussian process satisfying the fluctuation-dissipation relation (FDR)

⟨ξ̂i(0)ξ̂j(t)⟩ = kBT

m
K̂(t)δij (2.17)

where the i and j indices represent components of the vector.



Chapter 2 Background and Theory 12

Following the work of [7] and [6], we choose a general form of the memory kernel called

a positive Prony series, motivated by its wide use in literature [16], and because it can also

be viewed as an approximation of a power law [17], which has seen extensive use in the past

[18, 19]. The memory kernel takes the form of

K̂(t) =
M∑
k=1

ω2
ke

−νkt (2.18)

whereM is a non-negative integer corresponding to the number of modes, ωk = ω̃k√
ϵ
, and νk = ν̃k

ϵ ,

having ϵ be a rescaling factor and ωk and νk being two constant parameters.

We can define auxiliary variables to capture the kth mode in the Prony series

zk = −
∫ t

0
ωke

−ν(t−t′)v(t′)dt′ (2.19)

Differentiating the result gives

żk = −νkz(t)− ωkv(t) (2.20)

We then construct a random force for each mode that satisfies FDT and has a form similar to

equation 2.20. Consider the random variables

ξ̇k = −νkξk(t) +

√
2νk

kBT

m
N k(t) (2.21)

where N k is a random variable with 0 mean and unit variance. This describes an Ornstein-

Uhlenbeck process which has 0 mean and time correlation ⟨ξik(0)ξ
j
k(t)⟩ = kBT

m e−νktδij where

the i and j indices represent components of the vector. See appendix A for an overview of

Ornstein-Uhlenbeck processes and their exact solutions. The weighted sum of each ξk yields

ξ̂(t) =
M∑
k=1

ωkξk (2.22)

Combining zk and ξk yields a final auxiliary variable sk = zk + ξk. Substituting this back

into equation 2.15 gives an extended variable Markovian embedding of the generalized Langevin

equation

ẋ = v(t) (2.23a)

v̇ =
1

m
f(t) +

M∑
k=1

ωksk(t) (2.23b)

ṡk = −νksk(t)− ωkv(t) +

√
2νk

kBT

m
N k(t) (2.23c)
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An important consideration, and indeed a motivating reason for choosing this form, is

that equation 2.23 has the auxiliary variables in the form of a relaxation system, where each sk

relaxes on a timescale as determined by νk. This is a pivotal realization for the development of

our algorithm, as these timescales, when stepped over, reduce the auxiliary variable to a white

noise process coupled to the velocity variable, or effectively, a Langevin equation. This effect is

emphasized in our numerical algorithm, described in section 3.1.5.

2.4 Relaxation to the Langevin Equations

If we solve for sk(t) in equation 2.23c, and substitute into equation 2.23b, we find

v̇ =
1

m
f(t)−

M∑
k=1

ωk

νk
ṡk(t)−

M∑
k=1

ω2
k

νk
v(t) +

√√√√ M∑
k=1

2
ω2
k

νk

kBT

m
N k(t) (2.24)

In the white noise limit, as ϵ → 0 [20], we find ωk
νk

= ω̃k
√
ϵ

ν̃k
→ 0, and thus, v̇ reduces to the form

v̇ =
1

m
f(t)− γv(t) +

√
2γ

kBT

m
N k(t) (2.25)

where

γ =
M∑
k=1

ω2
k

νk
(2.26)

This, notably, has the exact form of the Langevin equations, having γ as a Stokes’ drag

coefficient, where in physical systems, Stokes’ drag has a known value of γ = 6πrηv with no-slip

boundary conditions or γ = 4πrηv with slip, having η be fluid dynamic viscosity. We would

expect, then, an integrator to be able to recover Langevin dynamics within this limit.

In the non-inertial limit as γ grows, we find this reduces further to overdamped Langevin

dynamics, or Brownian motion, where the inertial term becomes negligible, as the high friction

effectively “resets” the velocity over very short timescales, i.e., the past velocity is “forgotten.”

We can think of this intuitively as the influence of the memory kernel decaying instantaneously.

Refer to [21] for further analysis of this asymptotic behavior within the GLE.

This reduction of models from the GLE to the conventional Langevin equation and finally

to overdamped Brownian dynamics is an example of a stochastic relaxation system, and a

motivating reason behind the purpose of the time step rescaling and relaxation method. It is

clear that as time step grows, for the GLE or for Langevin dynamics, a particle’s velocity and

position become less and less correlated with its history of velocities and positions. Indeed, if one

takes a large enough time step, decaying memory effects in the GLE become almost negligible.



Chapter 2 Background and Theory 14

Regardless of friction coefficients or size of time step, an ideal integrator should be able to

produce the same or similar statistics as it might in the limit as the integrator approaches the

continuous-time equation of motion.

2.5 Superdiffusive GLE

In the superdiffusive case, a small change is needed to to the Markovian embedding.

ẋ = v(t) (2.27a)

v̇ =
1

m
f(t)−

M∑
k=1

ωksk(t) (2.27b)

ṡk = −νksk(t)− ωkv(t) +

√
2νk

kBT

m
N k(t) (2.27c)

The sole modification is in equation 2.27b, where the sign before the summation has flipped.

This change makes intuitive sense; particles in the bath displaced by the tagged particles motion

push the particle in the same direction [22]. In the case of viscoelastics, described by the positive

sign in equation 2.23b, the bath instead produces a slowly relaxing viscous force that acts against

the motion of the particle [23].

Further investigation of the superdiffusive GLE is set aside for future work.



Chapter 3

Numerical Methods

There have been a variety of methods developed to integrate these equations of motions, however,

recent developments have popularized the use of splitting methods for the GLE [6, 7].

In this chapter, we will go over the derivations and motivations for the current state-of-

the-art algorithms, and justify the choices made in the development of our time step rescaling

algorithm.

3.1 Strang Splittings

Strang splitting is a numerical method for the integration of differential equations, and is a

method that has been used in the past for Langevin equations [14] and for the GLE [6, 7].

Effectively, for a differential equation that is decomposable into a sum of differential operators,

we solve each operator independently, and then combine their results. See appendix B for a

more in depth explanation of how Strang splitting works to obtain second order accuracy.

Because we split the differential equation into many sub-problems, there exist many dif-

ferent combinations of differential operators that can be solved for. We choose a specific subset

of splittings here that are popular in literature, but note that other such splittings exist which

could be investigated as well.

3.1.1 Position and Velocity Updates

The simplest sub-problem to solve are those corresponding to the deterministic Newtonian

updates to position and velocity. If we consider the Liouvillian of the system to be L, these first
two splittings yield a splitting

L = Lx + Lv + . . . (3.1)

15
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where Lx corresponds to the deterministic position update, and Lv corresponds to the deter-

ministic velocity update.

Lx Lv . . .

ẋ v(t)

v̇ 1
m f(t)

∑M
k=1 ωksk(t)

ṡk −νksk(t)− ωkv(t) +
√
2νk

kBT
m N k(t)

Table 3.1: Components belonging to Lx and Lv

These deterministic Newtonian updates have well-developed algorithms for integration,

and we can choose from a variety of methods to solve these terms.

Name Type Method Accuracy

Forward Euler Explicit yn+1 = yn +∆tf(tn, yn) O(∆t)

Backward Euler Implicit yn+1 = yn +∆tf(tn+1, yn+1) O(∆t)

Runge-Kutta Explicit yn+1 = yn +∆t
∑s

i=1 biki O(∆t4)

Table 3.2: Methods of deterministic updates

We could also choose to solve these subsystems in a way similar to velocity Verlet, which

is an explicit symplectic integration scheme with 3rd order accuracy.

vn+1/2 = vn +
∆t

2m
fn (3.2a)

xn+1 = xn + vn+1/2∆t (3.2b)

vn+1 = vn+1/2 +
∆t

2m
fn+1 (3.2c)

This symmetric form of first order forward Euler updates is indicative of how one might take

advantage of Strang operator splittings to obtain higher order accuracy. We can choose to split

operators in this way, splitting the solution into symmetric half time step updates

e(A+B)∆t = eA∆t/2eB∆teA∆t/2 +O(∆t3) (3.3)

where A and B can be arbitrary selections of Lx or Lv. Following this form of velocity Verlet,

and motivated by similar decisions made for integrators in literature for Langevin dynamics [14]

and the GLE [6, 7], we choose to evaluate the deterministic updates to position and velocity

using the first order forward Euler method.

Specifically, similar to [14], we introduce a rescaling parameter b into these updates that

allows for any size time step to be chosen while maintaining statistical accuracy for known
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limits. The forward Euler steps with rescaling parameter for position and velocity are then

xn+1 = xn + b∆tvn (3.4a)

vn+1 = vn +
b∆t

m
fn (3.4b)

3.1.2 Velocity and Auxiliary Variable Coupling

A more complicated sub-problem is the velocity and auxiliary variable coupling, which can be

split in an increasing number of ways as the number of auxiliary variables increases.

Le . . .

v̇
∑M

k=1 ωksk(t)

ṡ −νksk(t)− ωkv(t) +
√
2νk

kBT
m N k(t)

Lk
e . . .

v̇
∑M

k=1 ωksk(t)

ṡ −ωkv(t) −νksk(t) +
√

2νk
kBT
m N k(t)

Table 3.3: Possible splits of velocity and auxiliary coupling

In table 3.3, we describe two different splits, used by [6] and [7] respectively. We note that

in [6], they have a single operator for the entire summation term in the velocity, while in [7],

they have M operators, one for each term in the summation coupled with a corresponding term

in the related auxiliary equation.

Similarly to the choices made for velocity Verlet, [6] choose to integrate Le using forward

Euler, producing the update

vn+1 = vn +∆t

M∑
k=1

ωksk(t) (3.5)

For the second splitting, note that for each Lk
e , we have the subsystem

v̇ = ωksk(t) (3.6a)

ṡk = −ωkv(t) (3.6b)

which corresponds to a harmonic oscillator with frequency ωk. Given initial conditions v(0) = vn

and sk(0) = snk , we have the exact solution

vn+1 = vn cos(ωk∆t) + snk sin(ωk∆t) (3.7a)

sn+1
k = −vn sin(ωk∆t) + snk cos(ωk∆t) (3.7b)
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Motivated by this exact solution, if we consider a similar split as [7] but grouped into a

single operator, as described in table 3.4, we can solve the entire subsystem exactly, without a

need to split the coupling into multiple auxiliary Liouvillians.

Le . . .

v̇
∑M

k=1 ωksk(t)

ṡ −ωkv(t) −νksk(t) +
√

2νk
kBT
m N k(t)

Table 3.4: Alternative splitting for velocity and auxiliary coupling

Now that we consider the entire summation in its entirety, we see that the velocity equation

is a sum of coupled harmonic oscillators with the remaining auxiliary variable terms. We can

guess that an exact solution to this differential equation might take a similar form as the solution

to the harmonic oscillator

v(t) = A cos(ct) +B sin(ct) + C (3.8a)

sk(t) = Ak cos(ct) +Bk sin(ct) + Ck (3.8b)

If we substitute this form, and solve for the coefficients, we find the exact solution of this

equation with initial conditions v(0) = vn and sk(0) = snk to be

vn+1 = vn cos(ω∆t) + sn sin(ω∆t) (3.9a)

sn+1
k = snk +

ωks
n

ω
[cos(ω∆t)− 1]− ωkv

n

ω
sin(ω∆t) (3.9b)

where ω2 =
∑M

k=1 ω
2
k and sn =

∑M
k=1 ωks

n
k/ω.

We choose this third form for our integrator, as it removes the need to investigate the

ordering of each Lk
e (as each operator does not commute), and, as we describe in section 4.1,

yields a well behaved rescaling parameter.

3.1.3 Auxiliary Update

Depending on the splitting chosen for the velocity and auxiliary variable coupling, the final

splitting necessary corresponds to the differential operator representing the remainder of the

auxiliary equation.

Table 3.5 describes the splits used by [6] and [7] respectively. As described in section 2.3,

these equations correspond to Ornstein-Uhlenbeck processes, which have analytically known

exact solutions.
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Lo

ṡ −νksk(t)− ωkv(t) +
√

2νk
kBT
m N k(t)

Lo

ṡ −νksk(t) +
√
2νk

kBT
m N k(t)

Table 3.5: Liouvillians for the auxiliary update

The first splitting, with the additional velocity term, as is done by Baczewski and Bond

[6], can be solved exactly as

sn+1
k = θks

n
k − (1− θk)

ωk

νk
vn +

√
(1− θ2k)

kBT

m
N n

k (3.10)

where N n
k is a vector of independent standard normal random variables, and θk = e−νk∆t. Note

that 3.10 involves two characteristic timescales: θk and νk, both of which appear in the term

that couples the bath variable to the velocity vn. The disadvantage of this form is that it is not

immediately clear how to obtain a closed-form expression for the timestep-rescaling parameter

by solving the recurrence relations for large n. Further, the exact Ornstein-Uhlenbeck solution

with drift used in this formulation approximates vn as a constant, which is only the case when

vn is slowly varying with respect to the size of time step, which heavily restricts the maximum

allowable size of time step.

The second splitting, as is done in [7, 14], can be solved exactly as

sn+1
k = θks

n
k +

√
(1− θ2k)

kBT

m
N n

k (3.11)

where N n
k is a vector of independent standard normal random variables, and θk = e−νk∆t.

As in our choice of splitting for the coupling term we do not have the additional velocity

term, we choose this second method to solve the Ornstein-Uhlenbeck process exactly.

3.1.4 Ordering of Splittings

As described briefly in section 3.1.1, we can choose various splittings as permutations of our

operators. As is done in literature, we have split our Liouvillian into

L = Lx + Lv + Le + Lo (3.12)

Depending on the problem, we can add an additional operator Lh to describe the time evolution

of the system Hamiltonian as well, having eLh∆tH(n) = H(n+ 1).
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If we approximate dynamics using these Strang splittings, we have

e(A+B+C+D)∆t = eA∆t/2eB∆t/2eC∆t/2eD∆teC∆t/2eB∆t/2eA∆t/2 +O(∆t3) (3.13)

where (A,B,C,D) is some permutation of (Lx,Lv,Le,Lo). [6] and [7] choose the ordering

(Lv,Lx,Le,Lo), and are differentiated by their choice of split, as described in section 3.1.2 and

3.1.3. Notably, this choice reduces to the standard velocity Verlet algorithm, in the absence of

noise.

Motivated by this, we choose the ordering (Lv,Lx,Le,Lo), which yields a well behaved

time step rescaling parameter as described in section 3.2. Empirically, other orderings may

yield rescaling parameters with vertical asymptotes, which leads to numerical instabilities. Ad-

ditionally, it yields a form similar to [7] and [6] which supports comparison between the three.

Further, it only requires one force evaluation per step, where the force must be sampled at half

steps in the integrator.

Theoretically, any permutation could be chosen and investigated, which may yield different

forms of the time step rescaling parameter. The investigation of these various splittings, however,

is left to future work.

3.1.5 Full Integrator

Substep BACSCAB [6] BAEOEAB [7] HOURS

Position xn+1 = xn +∆tvn xn+1 = xn +∆tvn xn+1 = xn + b∆tvn

Deterministic
Velocity

vn+1 = vn + ∆t
m f(t) vn+1 = vn + ∆t

m f(t) vn+1 = vn + b∆t
m f(t)

Velocity
coupling

vn+1 =
vn +∆t

∑M
k=1 ωks

n Repeated sequential
applications over all k,
vn+1 = cos(ωk∆t)vn +

sin(ωk∆t)

vn+1 = cos(ω∆t)vn +
sn sin(ω∆t)

Auxiliary
coupling

N/A sn+1
k = snk cos(ωk∆t)−

vn sin(ωk∆t)
sn+1
k =

snk + ωk
ω sn(cos(ω∆t)−

1)− ωk
ω vn sin(ω∆t)

Ornstein-
Uhlenbeck
update

sn+1
k =

θks
n
k−(1−θk)

ω
ν v

n+ξk
sn+1
k = θks

n
k + ξk sn+1

k = θks
n
k + ξk

Table 3.6: Summary of splittings chosen by different integrators in literature

In table 3.6, we summarize the updates for each integrator side by side. Here, the table

and the indices does not suggest any particular ordering of these updates. Indeed, all updates



Chapter 3 Numerical Methods 21

Figure 3.1: Self-regulated coarse-graining; how time step reduces the effective model

are written using a full step ∆t, while splittings use, by substitution, ∆t
2 . Further, we define

θk = e−νk∆t, ω2 =
∑M

k=1 ω
2
k, s

n =
∑M

k=1 ωks
n
k/ω, and ξk =

√
(1− θ2k)

kBT
m N n

k for a Gaussian

random variable with zero mean and unit variance N n
k .

The full HOURS integrator, with the described splitting and updates, is the following.

V
{
vn+1/4 = vn + b∆t

2m fn (3.14a)

X
{
xn+1/2 = xn + b∆t

2 vn+1/4 (3.14b)

E

vn+2/4 = vn+1/4 cos
(
ω∆t
2

)
+ sn sin

(
ω∆t
2

)
s
n+1/3
k = snk + ωks

n

ω

(
cos
(
ω∆t
2

)
− 1
)
− ωkv

n+1/4

ω sin
(
ω∆t
2

) (3.14c)

O
{
s
n+2/3
k = θks

n+1/3
k +

√
(1− θ2k)

kBT
m N n

k
(3.14d)

E

sn+1
k = s

n+2/3
k + ωks

n+2/3

ω

(
cos
(
ω∆t
2

)
− 1
)
− ωkv

n+2/4

ω sin
(
ω∆t
2

)
vn+3/4 = vn+2/4 cos

(
ω∆t
2

)
+ sn+2/3 sin

(
ω∆t
2

) (3.14e)

X
{
xn+1 = xn+1/2 + b∆t

2 vn+3/4 (3.14f)

V
{
vn+1 = vn+3/4 + b∆t

2m fn+1 (3.14g)

having θk = e−νk∆t, ω2 =
∑M

k=1 ω
2
k, s

n =
∑M

k=1 ωks
n
k/ω, and sn+2/3 =

∑M
k=1 ωks

n+2/3
k /ω. All

indices do not reflect the true value of the variable at fractional steps, although analysis of these

variables at fractional steps may yield useful information about properties of the integrator.

An important realization is that the Ornstein-Uhlenbeck update is by nature a relaxation

system, and as such, for large time step, we would expect the update to reduce to some equilib-

rium distribution for each auxiliary variable. We can see this numerically; indeed, for νk∆t ≫ 1,

we have θ = e−νk∆t ≈ 0. Essentially, the value of the auxiliary variable is proportional to the

Gaussian white noise process N n
k . Because of the linear coupling between the velocity and



Chapter 3 Numerical Methods 22

auxiliary variables in equation 2.23b, the cumulative effect of the auxiliary variables is that of

a Gaussian white noise process. Effectively, this is now a conventional Langevin equation.

Due to this realization, we can think of the number of auxiliary variables in the relaxation

limit as an interpolation between generalized Langevin dynamics and conventional Langevin

dynamics, controlled continuously by the time step ∆t. As shown in section 2.4, the effective

reduction is a Langevin equation with collision frequency determined by γ =
∑M

k=1
ω2
k

νk
. This

further defines an Ornstein-Uhlenbeck process in velocity with characteristic timescale γ, which,

as above, effectively reduces to a white noise process when γ∆t ≫ 1. The dynamics of a system

whose velocity is a white noise process is known as Brownian dynamics or overdamped Langevin

dynamics, and as shown by [14], a time step rescaling parameter in the deterministic updates to

position and velocity is sufficient for obtaining the correct Brownian statistics at long times. We

extend this to accommodate for the additional reduction from generalized Langevin dynamics

to conventional Langevin dynamics as a function of time step, as shown in figure 3.1. As done

by [14], we guarantee that this reduction occurs by correcting for long-time convergence errors

produced by the algorithm for large ∆t.

3.2 Determination of Rescaling Parameter

The diffusion coefficient is among the most important parameters that characterizes particles,

as it describes the mobility of particles in media and is encountered in numerous equations of

physics and chemistry. More importantly, it is experimentally accessible, making the diffusion

coefficient a prime target for comparison between an integrator and a physical system. Indeed,

an ideal integrator would be able to recover the correct diffusion coefficient regardless of the

size of time step. [15] and [14] list seven desiderata of quantities such as the diffusion coefficient

that a useful integrator should be able to reproduce. This list of desiderata is summarized in

table 3.7, using the Stokes’ drag coefficient γ.

As in [14], we find that requiring the continuous limit diffusion coefficient in the zero force

case fixes an expression for time step rescaling b. In the white noise limit, as described in section

2.4, we have γ =
∑M

k=1
ω2
k

νk
, which we use to satisfy the desiderata. For the zero force case, the

Fickian MSD in the continuous limit is 2Dt = ⟨x2(n)⟩ = 2kBT
mγ t. As such, by requiring the MSD,

we fix the diffusion coefficient, and thus, the rescaling parameter b. For a full derivation of b,

see section 4.1. The form of b that satisfies this constraint is

b =

√√√√√2 sin2
(
∥ω⃗∥∆t

2

)
∥ω⃗∥2∆t

(
M∑
k=1

ω2
k coth

(
νk∆t

2

))( M∑
k=1

ω2
k

νk

)−1

(3.15)
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Force term Quantity Expression Value

Zero (f(n) = 0) MSD ⟨x2(n)⟩ 2kBT
mγ n∆t

MSV ⟨v2(n)⟩ kBT
m

VACF ⟨v(n)v(n+∆n)⟩ kBT
m e−γ∆n∆t

Uniform (f(n) = c) Terminal Drift ⟨x(n+ 1)− x(n)⟩/∆t f
mγ

Linear (f(n) = −kx) MSD ⟨x2(n)⟩ kBT
mk

MSV ⟨v2(n)⟩ kBT
m

Virial m⟨v2(n)⟩ − k⟨x2(n)⟩ 0

Table 3.7: Desiderata



Chapter 4

Error Analysis and Evaluation

4.1 One Dimension Zero Force Analysis

Motivated by [14], we look to find an expression for the rescaling parameter by fixing the

expected Fickian diffusion coefficient in zero force potential at long times.

Consider the case of particles in one dimension with zero potential (i.e. ∀nf(x) = 0). We

write the matrix form of each update operator without the random variables in block notation

as follows

O


1

1

θ

 V


1

1

I



E


1

P S⃗⊤

−S⃗ Q

 X


1 1

2b∆t

1

I


Table 4.1: Matrix form of update operators for zero potential

where

ω⃗ =



ω1

ω2

...

ωM


, θ =



θ1

θ2

. . .

θM


, P = cos

(
∥ω⃗∥∆t

2

)
, S⃗ =

ω⃗

∥ω⃗∥
sin

(
∥ω⃗∥∆t

2

)
(4.1)

24
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and

Q = I +
1

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗ (4.2)

The sequential application of each of these operators in the order V XEOEXV yields a

full update matrix Ψ.

4.1.1 Velocity and Auxiliary Variables

The first column of each update is the standard basis vector e1, and as such, we know that the

velocity and auxiliary variables after a full step do not depend on the position at the previous

step.

With this in mind, and acknowledging that V is the identity matrix and can thus be

removed without modifying the full update, consider the updates done by the application of

EOE. For simplicity, we remove position from the related operators.

EOE =

 P S⃗⊤

−S⃗ Q


1

θ


 P S⃗⊤

−S⃗ Q

 =

 P 2 − S⃗⊤θS⃗ P S⃗⊤ + S⃗⊤θQ

−PS⃗ −QθS⃗ −S⃗S⃗⊤ +QθQ

 (4.3)

We know then that the velocity and auxiliary variables after a full update step arevn+1

s⃗n+1

 =

 P 2 − S⃗⊤θS⃗ P S⃗⊤ + S⃗⊤θQ

−PS⃗ −QθS⃗ −S⃗S⃗⊤ +QθQ


vn

s⃗n

+

 P S⃗⊤

−S⃗ Q

 ξ⃗n (4.4)

where

s⃗n =



sn1

sn2

...

snM


(4.5)
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and ξ⃗n is a vector of random variables

ξ⃗n =



0√
(1− θ21)

kBT
m N n

1√
(1− θ22)

kBT
m N n

2

...√
(1− θ2M )kBT

m N n
M


(4.6)

4.1.1.1 Useful Properties of Update Matrices

Consider the product EE⊤.

EE⊤ =

 P S⃗⊤

−S⃗ Q


P −S⃗⊤

S⃗ Q⊤

 =

 P 2 + S⃗ · S⃗ −PS⃗⊤ + S⃗⊤Q⊤

−PS⃗ +QS⃗ S⃗S⃗⊤ +QQ⊤

 (4.7)

Note that

P 2 + S⃗ · S⃗ = cos2
(
∥ω⃗∥∆t

2

)
+ sin2

(
∥ω⃗∥∆t

2

)
= 1 (4.8)

Next, consider the product QS⃗

QS⃗ = S⃗ +
1

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗S⃗ (4.9a)

= S⃗ +
1

∥ω⃗∥3

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ω⃗⊤ω⃗ sin

(
∥ω⃗∥∆t

2

)
(4.9b)

= S⃗ +
ω⃗

∥ω⃗∥

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
sin

(
∥ω⃗∥∆t

2

)
(4.9c)

= S⃗ cos

(
∥ω⃗∥∆t

2

)
(4.9d)

= PS⃗ (4.9e)

Lastly, consider S⃗S⃗⊤

S⃗S⃗⊤ =
1

∥ω⃗∥2
sin2

(
∥ω⃗∥∆t

2

)
ω⃗ ⊗ ω⃗ (4.10)
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and QQ⊤, noting that Q is symmetric and thus Q⊤ = Q

QQ⊤ =

(
I +

1

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗

)(
I +

1

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗

)
(4.11a)

= I +
2

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗ +

ω⃗ · ω⃗
∥ω⃗∥4

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)2

ω⃗ ⊗ ω⃗ (4.11b)

= I +
2

∥ω⃗∥2

(
cos

(
∥ω⃗∥∆t

2

)
− 1

)
ω⃗ ⊗ ω⃗ +

1

∥ω⃗∥2

(
1− 2 cos

(
∥ω⃗∥∆t

2

)
+ cos2

(
∥ω⃗∥∆t

2

))
ω⃗ ⊗ ω⃗

(4.11c)

= I − 1

∥ω⃗∥2
ω⃗ ⊗ ω⃗ +

1

∥ω⃗∥2
cos2

(
∥ω⃗∥∆t

2

)
ω⃗ ⊗ ω⃗ (4.11d)

= I − 1

∥ω⃗∥2

(
1− cos2

(
∥ω⃗∥∆t

2

))
ω⃗ ⊗ ω⃗ (4.11e)

= I − 1

∥ω⃗∥2
sin2

(
∥ω⃗∥∆t

2

)
ω⃗ ⊗ ω⃗ (4.11f)

= I − S⃗S⃗⊤ (4.11g)

It follows that QQ⊤ + S⃗S⃗⊤ = I.

If we substitute equations 4.8, 4.9 4.10, and 4.11 into 4.7, we find that

EE⊤ =

1 0

0 I

 = I (4.12)

As such, E⊤ = E−1, or equivalently, E must be an orthogonal matrix.

Now, consider the full update matrix Ψ = EOE. As E is orthogonal, all eigenvalues of E

have modulus 1, and as a linear transformation, E preserves vector lengths. As such, O is the

only update that modifies the vector length, and as all θk < 1, O generally shrinks vectors. The

only element of O that is 1 is the first element on the diagonal, which is necessarily 1. This

means that the eigenvalues of Ψ all have modulus less than or equal to 1.

Assume w⃗ to be an eigenvector of Ψ with eigenvalue λ that has modulus 1. This means that

|Ψw⃗| = |w⃗|, which can only be the case, as E preserves vector lengths, when |O(Ew⃗)| = |Ew⃗|.
This implies that Ew⃗ = [m 0 . . . 0]⊤ = z⃗ where m has modulus 1, as the only component

of O that preserves vector lengths is the first element on the diagonal. As such, we have

EOEw⃗ = EOz⃗ = Ez⃗ = λw⃗ = λE⊤z⃗, which can only be the case when the first column of E is

equal to the first row of E multiplied by a constant that has modulus 1. This is only possible

in the case when cos
(
∥ω⃗∥∆t

2

)
= 0 or when sin

(
∥ω⃗∥∆t

2

)
= 0, which, for well chosen values of ∆t

need not be the case.
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As such, for ∆t satisfying cos
(
∥ω⃗∥∆t

2

)
̸= 0 and sin

(
∥ω⃗∥∆t

2

)
̸= 0, EOE has eigenvalues with

modulus all less than 1, ensuring Schur stability of the full update matrix Ψ.

4.1.1.2 Expectation Value Equation

Given some state vector for the velocity and auxiliary variables

p⃗n =

vn
s⃗n

 (4.13)

we know

p⃗n+1 = EOEp⃗n + Eξ⃗n (4.14)

Consider the expectation value of its outer product with itself

〈
p⃗n+1 ⊗ p⃗n+1

〉
=
〈(

EOEp⃗n + Eξ⃗n
)
⊗
(
EOEp⃗n + Eξ⃗n

)〉
(4.15a)

=

〈(
EOEp⃗n + Eξ⃗n

)(
EOEp⃗n + Eξ⃗n

)⊤〉
(4.15b)

=
〈(

EOEp⃗n + Eξ⃗n
)(

p⃗n⊤E⊤O⊤E⊤ + ξ⃗n⊤E⊤
)〉

(4.15c)

=
〈
EOEp⃗np⃗n⊤E⊤O⊤E⊤

〉
+
〈
EOEp⃗nξ⃗n⊤E⊤

〉
+
〈
Eξ⃗np⃗n⊤E⊤O⊤E⊤

〉
+
〈
Eξ⃗nξ⃗n⊤E⊤

〉
(4.15d)

=
〈
EOEp⃗np⃗n⊤E⊤O⊤E⊤

〉
+
〈
Eξ⃗nξ⃗n⊤E⊤

〉
(4.15e)

= EOE ⟨p⃗n ⊗ p⃗n⟩E⊤O⊤E⊤ + E
〈
ξ⃗n ⊗ ξ⃗n

〉
E⊤ (4.15f)

where we note that there is no correlation between random variables in ξ⃗n and the velocity and

auxiliary variables at the beginning of the step.
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Consider the final term, E
〈
ξ⃗n ⊗ ξ⃗n

〉
E⊤.

E
〈
ξ⃗n ⊗ ξ⃗n

〉
E⊤ =

kBT

m
E



0

1− θ21

1− θ22

. . .

1− θ2M


E⊤ (4.16a)

=
kBT

m
E(I −O2)E⊤ (4.16b)

=
kBT

m
I − kBT

m
EO2E⊤ (4.16c)

which is invariant to n.

We are interested in finding the long-time behavior of the algorithm, when n ≫ 1, and

would expect the algorithm to converge. Under this long-time convergence assumption, we

would expect p⃗n+1 = p⃗n. In subsection 4.1.1.3 we verify that this assumption is indeed true.

For simplicity, we drop the superscript, and write the full expectation equation as

⟨p⃗⊗ p⃗⟩ = EOE ⟨p⃗⊗ p⃗⟩E⊤O⊤E⊤ +
kBT

m
I − kBT

m
EO2E⊤ (4.17)

4.1.1.3 Lyapunov Equation Solution

We notice that equation 4.17 is similar to a discrete-time Lyapunov equation, which can be

written as

EOE ⟨p⃗⊗ p⃗⟩E⊤O⊤E⊤ − ⟨p⃗⊗ p⃗⟩+ kBT

m
I − kBT

m
EO2E⊤ = 0 (4.18)

The general form of the discrete-time Lyapunov equation is

A⊤BA−B + C = 0 (4.19)

such that if B and C are positive-definite, then update matrix A is discrete-time stable (in a

Schur stability sense). In the case that A is stable, then the solution for B is

B =

∞∑
t=0

(A⊤)tCAt (4.20)

where the stability condition allows the series to converge in general.
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Consider the solution for equation 4.18, letting Ψ = EOE. As shown in subsection 4.1.1.1,

for particular values of ∆t, Ψ has eigenvalues with modulus all less than 1, guaranteeing that

the infinite series converges.

⟨p⃗⊗ p⃗⟩ =
∞∑
t=0

Ψt

(
kBT

m
I − kBT

m
EO2E⊤

)
(Ψ⊤)t (4.21a)

=
kBT

m

(
I − EO2E⊤ + (EOE)(E⊤OE⊤)− (EOE)(EO2E⊤)(E⊤OE⊤) + . . .

)
(4.21b)

=
kBT

m

(
I +

∞∑
t=0

Ψt
(
(EOE)(E⊤OE⊤)− EO2E⊤

)
(Ψ⊤)t

)
(4.21c)

=
kBT

m

(
I +

∞∑
t=0

Ψt
(
EO(EE⊤)OE⊤ − EO2E⊤

)
(Ψ⊤)t

)
(4.21d)

=
kBT

m

(
I +

∞∑
t=0

Ψt
(
EO2E⊤ − EO2E⊤

)
(Ψ⊤)t

)
(4.21e)

=
kBT

m
I (4.21f)

Here, we note that, as proved in subsection 4.1.1.1, EE⊤ = I, and O⊤ = O as O is diagonal.

As such, alternating terms of the original series cancel out, and the series converges to kBT
m I.

Because the solution exists, the updates to the velocity and auxiliary variables must be stable.

As a result, we know that the integrator converges such that ⟨v2⟩ = ⟨s2i ⟩ = kBT
m and

⟨vsi⟩ = ⟨sisj⟩ = 0 for all i, j ∈ Z : i, j ∈ [1,M ], such that i ̸= j and where M is the number of

auxiliary variables.

4.1.2 Position Variables

The final update is to the position variable. The full matrix update Ψ = XV EOEVX is

Ψ =


1 1

2b∆t

1

1




1

P 2 − S⃗⊤θS⃗ P S⃗⊤ + S⃗⊤θQ

−PS⃗ −QθS⃗ −S⃗S⃗⊤ +QθQ




1 1

2b∆t

1

1

 (4.22a)

=


1 b∆t

2

(
1 + P 2 − S⃗⊤θS⃗

)
b∆t
2

(
PS⃗⊤ + S⃗⊤θQ

)
P 2 − S⃗⊤θS⃗ P S⃗⊤ + S⃗⊤θQ

−PS⃗ −QθS⃗ −S⃗S⃗⊤ +QθQ

 (4.22b)
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4.1.2.1 Expectation Value Equation

Given some state vector for the position, velocity, and auxiliary variables

p⃗n =


xn

vn

s⃗n

 (4.23)

we know that the state after a full update is

p⃗n+1 = Ψp⃗n +XEξ⃗n (4.24)

Having evaluated the expectation values of the velocity and auxiliary variables already, the only

remaining values to compute are the expectation values of position with itself (MSD), and the

cross correlations of position with velocity and the auxiliary variables. However, unlike velocity

and the auxiliary variables, in the zero-force case we do not expect position to be bounded,

and instead expect it to grow linearly with time. This means we can not make the simplifying

assumption that for n ≫ 1, p⃗n+1 = p⃗n. Instead, we consider the update explicitly.

xn+1 = xn +
b∆t

2

(
vn + vn+1

)
(4.25a)

vn+1 =
(
P 2 − S⃗⊤θS⃗

)
vn +

(
PS⃗⊤ + S⃗⊤θQ

)
s⃗n + S⃗⊤ξ⃗n (4.25b)

sn+1 =
(
−PS⃗ −QθS⃗

)
vn +

(
−S⃗S⃗⊤ +QθQ

)
s⃗n +Qξ⃗n (4.25c)

We find that the evolution of MSD is

⟨xn+1xn+1⟩ = ⟨xnxn⟩+ b∆t⟨xnvn⟩+ b∆t⟨xnvn+1⟩+ b2∆t2

4
⟨vnvn⟩+

b2∆t2

2
⟨vnvn+1⟩+ b2∆t2

4
⟨vn+1vn+1⟩

(4.26a)

= ⟨xnxn⟩+ b∆t⟨xnvn⟩+ b∆t⟨xnvn+1⟩+ b2∆t2

4

kBT

m
+

b2∆t2

2
⟨vnvn+1⟩+ b2∆t2

4

kBT

m

(4.26b)
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having

⟨vnvn+1⟩ =
〈
vn
((

P 2 − S⃗⊤θS⃗
)
vn +

(
PS⃗⊤ + S⃗⊤θQ

)
s⃗n + S⃗⊤ξ⃗n

)〉
(4.27a)

=
(
P 2 − S⃗⊤θS⃗

)
⟨vnvn⟩+

(
PS⃗⊤ + S⃗⊤θQ

)
⟨vns⃗n⟩+ S⃗⊤⟨vnξ⃗n⟩ (4.27b)

=
(
P 2 − S⃗⊤θS⃗

)
⟨vnvn⟩ (4.27c)

=
(
P 2 − S⃗⊤θS⃗

) kBT

m
(4.27d)

⟨vnsn+1⟩ = (−PS⃗ −QθS⃗)
kBT

m
(4.27e)

and

⟨xnvn+1⟩ =
〈
xn
((

P 2 − S⃗⊤θS⃗
)
vn +

(
PS⃗⊤ + S⃗⊤θQ

)
s⃗n + S⃗⊤ξ⃗n

)〉
(4.28a)

=
(
P 2 − S⃗⊤θS⃗

)
⟨xnvn⟩+

(
PS⃗⊤ + S⃗⊤θQ

)
⟨xns⃗n⟩+ S⃗⊤⟨xnξ⃗n⟩ (4.28b)

=
(
P 2 − S⃗⊤θS⃗

)
⟨xnvn⟩+

(
PS⃗⊤ + S⃗⊤θQ

)
⟨xns⃗n⟩ (4.28c)

⟨xnsn+1⟩ = (−PS⃗ −QθS⃗)⟨xnvn⟩+ (−S⃗S⃗⊤ +QθQ)⟨xnsn⟩ (4.28d)

⟨xn+1vn+1⟩ = ⟨xnvn+1⟩+ b∆t

2
⟨vnvn+1⟩+ b∆t

2
⟨vn+1vn+1⟩ (4.28e)

⟨xn+1sn+1⟩ = ⟨xnsn+1⟩+ b∆t

2
⟨vnsn+1⟩+ b∆t

2
⟨vn+1sn+1⟩ (4.28f)

which results in the following recurrent system of equations

⟨xn+1vn+1⟩ =
(
P 2 − S⃗⊤θS⃗

)
⟨xnvn⟩+

(
PS⃗⊤ + S⃗⊤θQ

)
⟨xns⃗n⟩+ b∆t

2

kBT

m

(
1 + P 2 − S⃗⊤θS⃗

)
(4.29a)

⟨xn+1s⃗n+1⟩ =
(
−PS⃗ −QθS⃗

)
⟨xnvn⟩+

(
−S⃗S⃗⊤ +QθQ

)
⟨xns⃗n⟩+ b∆t

2

kBT

m

(
−PS⃗ −QθS⃗

)
(4.29b)

4.1.2.2 Explicit Matrix Evaluation

We note that we can rewrite this in terms of the velocity and auxiliary variable update matrices,

and as the eigenvalues of EOE all have modulus less than 1, we know that ⟨xnvn⟩ and ⟨xns⃗n⟩
converge. As such, this gives, after dropping superscripts for simplicity⟨xv⟩

⟨xs⃗⟩

 = EOE

⟨xv⟩
⟨xs⃗⟩

+
b∆t

2

kBT

m
(I + EOE)

1
0

 (4.30)
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or, equivalently,

(I − EOE)

⟨xv⟩
⟨xs⃗⟩

 =
b∆t

2

kBT

m
(I + EOE)

1
0

 (4.31)

We write the vector of expectation values as p⃗, and find that

(I − EOE)p⃗ =
b∆t

2

kBT

m
(I + EOE)

1
0

 (4.32a)

p⃗ =
b∆t

2

kBT

m
(I − EOE)−1(I + EOE)

1
0

 (4.32b)

=
b∆t

2

kBT

m

( ∞∑
t=0

(EOE)t

)
(I + EOE)

1
0

 (4.32c)

=
b∆t

2

kBT

m

( ∞∑
t=0

(EOE)t + (EOE)t+1

)1
0

 (4.32d)

=
b∆t

2

kBT

m

(( ∞∑
t=0

(EOE)t + (EOE)t

)
− I

)1
0

 (4.32e)

=
b∆t

2

kBT

m

(
2

( ∞∑
t=0

(EOE)t

)
− I

)1
0

 (4.32f)

=
b∆t

2

kBT

m

(
2(I − EOE)−1 − I

)1
0

 (4.32g)
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By the Woodbury matrix identity, this is equivalent to

p⃗ =
b∆t

2

kBT

m

(2(I + E(−O)E)−1 − I
)1

0


 (4.33a)

=
b∆t

2

kBT

m

(2 (I − E(−O−1 + EE)−1E
)
− I
)1

0


 (4.33b)

=
b∆t

2

kBT

m

(I − E(−O−1 + EE)−1E)

1
0


 (4.33c)

=
b∆t

2

kBT

m


1
0

− E(−O−1 + EE)−1E

1
0


 (4.33d)

For simplicity, let α = ∥ω∥∆t
2 .

−O−1 + EE =

P 2 − S⃗⊤S⃗ − 1 PS⃗⊤ + S⃗⊤Q

−PS⃗ −QS⃗ −S⃗S⃗⊤ +QQ− θ−1

 (4.34a)

=

cos2(α)− sin2(α)− 1 2 cos(α) sin(α)∥ω∥ ω⃗⊤

−2 cos(α) sin(α)∥ω∥ ω⃗ I − 2 sin2(α)
∥ω∥2 ω⃗ω⃗⊤ − θ−1

 (4.34b)

=

−2 sin2(α) sin(2α)
∥ω∥ ω⃗⊤

− sin(2α)
∥ω∥ ω⃗ I − θ−1 − 2 sin2(α)

∥ω∥2 ω⃗ω⃗⊤

 (4.34c)

To compute the inverse (−O−1+EE)−1, we use the block matrix inverse. Given specific choice

of ∆t, we can guarantee that −2 sin2(α) is non-zero, and thus invertible. We first find the

inverse of the Schur complement of −2 sin2(α) in −O−1 + EE.

I − θ−1 − 2
sin2(α)

∥ω∥2
ω⃗ω⃗⊤ −

(
−sin(2α)

∥ω∥
ω⃗

)(
1

−2 sin2(α)

)(
sin(2α)

∥ω∥
ω⃗⊤
)

(4.35a)

= I − θ−1 − 2
sin2(α)

∥ω∥2
ω⃗ω⃗⊤ − sin2(2α)

2 sin2(α)∥ω∥2
ω⃗ω⃗⊤ (4.35b)

= I − θ−1 − 2

∥ω∥2
ω⃗ω⃗⊤ (4.35c)
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Using the Sherman-Morrison formula, we know that the inverse of this is

(I − θ−1 − 2

∥ω∥2
ω⃗ω⃗⊤)−1 = (I − θ−1)−1 +

2

∥ω∥2
(I − θ−1)−1ω⃗ω⃗⊤(I − θ−1)−1

1− 2
∥ω∥2 ω⃗

⊤(I − θ−1)−1ω⃗
(4.36a)

= (I − θ−1)−1 +
2(I − θ−1)−1ω⃗ω⃗⊤(I − θ−1)−1

∥ω∥2 − 2ω⃗⊤(I − θ−1)−1ω⃗
(4.36b)

= K +
2Kω⃗ω⃗⊤K

∥ω∥2 − 2ω⃗⊤Kω⃗
(4.36c)

where we define

K = (I − θ−1)−1 =


θ1

θ1−1

θ2
θ2−1

. . .

 (4.37)

and let R = (I − θ−1 − 2
∥ω∥2 ω⃗ω⃗

⊤)−1. Given R, we then invert −O−1 + EE blockwise, as

(−O−1 + EE)−1 =

 1
−2 sin2(α)

− 1
4 sin4(α)

sin2(2α)
∥ω∥2 ω⃗⊤Rω⃗ 1

2 sin2(α)

sin(2α)
∥ω∥ ω⃗⊤R

1
−2 sin2(α)

sin(2α)
∥ω∥ Rω⃗ R

 (4.38)

We then explicitly compute the matrix multiplication given by equation 4.33d

(−O−1 + EE)−1E

1
0

 = (−O−1 + EE)−1

 P

−S⃗

 (4.39a)

=

 cos(α)

−2 sin2(α)
− cos(α)

4 sin4(α)

sin2(2α)
∥ω∥2 ω⃗⊤Rω⃗ − sin(α)

2 sin2(α)

sin(2α)
∥ω∥2 ω⃗⊤Rω⃗

cos(α)

−2 sin2(α)

sin(2α)
∥ω∥ Rω⃗ − sin(α)

∥ω∥ Rω⃗

 (4.39b)

=

 cos(α)

−2 sin2(α)
− cos(α)

∥ω∥2 sin2(α) ω⃗
⊤Rω⃗

− 1
∥ω∥ sin(α)Rω⃗

 (4.39c)

E(−O−1 + EE)−1E

1
0

 =

 cos2(α)

−2 sin2(α)
− cos2(α)

∥ω∥2 sin2(α) ω⃗
⊤Rω⃗ − 1

∥ω∥2 ω⃗
⊤Rω⃗

cos(α)
2∥ω∥ sin(α) ω⃗ + cos(α)

∥ω∥3 sin(α) ω⃗ω⃗
⊤Rω⃗ − 1

∥ω∥ sin(α)Rω⃗ − cos(α)−1
∥ω∥3 sin(α) ω⃗ω⃗

⊤Rω⃗


(4.39d)

=

 cos2(α)

−2 sin2(α)
− 1

∥ω∥2 sin2(α) ω⃗
⊤Rω⃗

cos(α)
2∥ω∥ sin(α) ω⃗ + 1

∥ω∥3 sin(α) ω⃗ω⃗
⊤Rω⃗ − 1

∥ω∥ sin(α)Rω⃗

 (4.39e)
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which gives us1
0

− E(−O−1 + EE)−1E

1
0

 =

 1 + cos2(α)

2 sin2(α)
+ 1

∥ω∥2 sin2(α) ω⃗
⊤Rω⃗

− cos(α)
2∥ω∥ sin(α) ω⃗ − 1

∥ω∥3 sin(α) ω⃗ω⃗
⊤Rω⃗ + 1

∥ω∥ sin(α)Rω⃗

 (4.40a)

=

 csc2(α)+1
2 + 1

∥ω∥2 sin2(α) ω⃗
⊤Rω⃗

− cos(α)
2∥ω∥ sin(α) ω⃗ − 1

∥ω∥3 sin(α) ω⃗ω⃗
⊤Rω⃗ + 1

∥ω∥ sin(α)Rω⃗

 (4.40b)

Consider the term ω⃗⊤Rω⃗

ω⃗⊤Rω⃗ = ω⃗⊤Kω⃗ +
2ω⃗⊤Kω⃗ω⃗⊤Kω⃗

∥ω∥2 − 2ω⃗⊤Kω⃗
(4.41a)

=
∥ω∥2ω⃗⊤Kω⃗ − 2ω⃗⊤Kω⃗ω⃗⊤Kω⃗

∥ω∥2 − 2ω⃗⊤Kω⃗
+

2ω⃗⊤Kω⃗ω⃗⊤Kω⃗

∥ω∥2 − 2ω⃗⊤Kω⃗
(4.41b)

=
∥ω∥2ω⃗⊤Kω⃗

∥ω∥2 − 2ω⃗⊤Kω⃗
(4.41c)

=
∥ω∥2

∑
k ω

2
k

θk
θk−1∑

k ω
2
k − 2ω2

k
θk

θk−1

(4.41d)

=
∥ω∥2

∑
k ω

2
k

θk
θk−1∑

k ω
2
k
1+θk
1−θk

(4.41e)

and consider the kth component of the term Rω⃗

Rω⃗ = Kω⃗ +
2Kω⃗ω⃗⊤Kω⃗

∥ω∥2 − 2ω⃗⊤Kω⃗
(4.42a)

(Rω⃗)k = − θkωk

1− θk
+

2ωk
θk

1−θk

(∑
j ω

2
j

θj
1−θj

)
∑

j ω
2
j
1+θj
1−θj

(4.42b)

=
ωkθk
1− θk

−1 +
2
∑

j ω
2
j

θj
1−θj∑

j ω
2
j
1+θj
1−θj

 (4.42c)

=
ωkθk
1− θk

∑j −ω2
j
1+θj
1−θj

+ 2ω2
j

θj
1−θj∑

j ω
2
j
1+θj
1−θj

 (4.42d)

=
ωkθk
1− θk

 −
∑

j ω
2
j∑

j ω
2
j
1+θj
1−θj

 (4.42e)

Rω⃗ =
−∥ω∥2∑
k ω

2
k
1+θk
1−θk

Kω⃗ (4.42f)
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which, if we substitute into equation 4.40b, yields

p⃗ =

⟨xv⟩
⟨xs⃗⟩

 =
b∆t

2

kBT

m

 ∥ω∥2 csc2(α)
(∑

k ω
2
k
1+θk
1−θk

)−1

− cos(α)
2∥ω∥ sin(α) ω⃗ − 1

∥ω∥ sin(α)

∑
k ω2

k
θk

θk−1∑
k ω2

k
1+θk
1−θk

ω⃗ − 1
∥ω∥ sin(α)

∥ω∥2∑
k ω2

k
1+θk
1−θk

Kω⃗


(4.43)

4.1.2.3 Fickian MSD

Now that we know the long-time values of ⟨xv⟩ and ⟨xs⃗⟩, we can solve the recurrence relation

for MSD, equation 4.26b. We make the additional assumption that MSD is initially 0.

⟨xn+1xn+1⟩ = ⟨xnxn⟩+ b∆t⟨xnvn⟩+ b∆t
((

P 2 − S⃗⊤θS⃗
)
⟨xnvn⟩+

(
PS⃗⊤ + S⃗⊤θQ

)
⟨xns⃗n⟩

)
+

b2∆t2

2

kBT

m
+

b2∆t2

2

kBT

m

(
P 2 − S⃗⊤θS⃗

)
(4.44a)

= ⟨xnxn⟩+ b2∆t2

2

kBT

m

2∥ω∥2

sin2
(
∥ω∥∆t

2

) ( M∑
k=1

ω2
k(1 + θk)

1− θk

)−1

(4.44b)

⟨xnxn⟩ = n
b2∆t2

2

kBT

m

2∥ω∥2

sin2
(
∥ω∥∆t

2

) ( M∑
k=1

ω2
k(1 + θk)

1− θk

)−1

(4.44c)

The expected Fickian MSD is 2tkBT
mγ = 2n∆tkBT

mγ where we let t = n∆t, and γ is given in the

white noise limit as
∑M

k=1
ω2
k

νk
. If we equate these expressions, and substitute θk = exp(−νk∆t),

we can solve for an analytical expression of b as

b =

√√√√√2 sin2
(
∥ω⃗∥∆t

2

)
∥ω⃗∥2∆t

(
M∑
k=1

ω2
k coth

(
νk∆t

2

))( M∑
k=1

ω2
k

νk

)−1

(4.45)

4.1.3 Zero-force Analysis Overview

Overall, the integrator with the rescaling parameter defined by equation 4.45 has the following

expected values, as described in table 4.2

MSD ⟨xnxn⟩ 2tkBT
mγ

MSV ⟨vnvn⟩ kBT
m

MS-Auxiliary ⟨snksnk⟩
kBT
m

Table 4.2: Zero-force Analysis Results
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Figure 4.1: Rescaling parameter as a function of ∆t given ω = ν = 2

4.1.4 Zero-force One Auxiliary Variable Numerical Results

To validate that these averages are recovered in practice, we performed numerical experiments

to systematically compare the proposed HOURS integrator to results from literature. Consider

the case of particles with a single mode (M = 1) and a single dimension moving in zero external

potential. For simplicity, we drop the subscripts on ωk and νk, and choose unit-less parameters

that are order 1, having m = kB = T = 1 and ω = ν = 2. With these chosen parameters, we

have γ = ω2

ν = 2. All simulations are implemented in Python.

Under these chosen parameters, the rescaling parameter has the form

b =

√
1

∆t
sin2(∆t) coth(∆t) (4.46)

which is shown in figure 4.1. For a discussion of properties relating to the rescaling parameter,

see section 4.3.

As a baseline comparison, we would expect the integrator to recover the slope of MSD

at long times, as, by construction, this is what the rescaling parameter is intended to do. For
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Figure 4.2: Log-log plot of MSD from BAEOEAB and HOURS with zero external force, one
auxiliary variable, and with various ∆t’s

comparison, we also implement Duong and Shang’s BAEOEAB integrator for the generalized

Langevin equations [7]. Note that for one bath variable, the harmonic coupling update chosen

by [7] is exact, and is equivalent to the exact coupling update chosen for our integrator. The

only difference in implementation is we remove the effect of the rescaling parameter, setting

b = 1.

For each simulation, we simulate 5000 particles to compute ensemble averages. Initial

positions are set to 0, while auxiliary variables and velocities are initialized to the Maxwell-

Boltzmann distribution, i.e. they have zero mean and variance kBT
m . Random seeds are not

fixed across simulations. We run one simulation per fixed time step, starting from ∆t = 2e−3

and ranging to ∆t = 2e3, increasing time step by powers of 2. The final time in each simulation

is set to a fixed tF = 256. In figure 4.2, we plot the mean squared displacement of the 5000

particles as a function of time, where the color map describes the value of ∆t for the BAEOEAB

integrator and for the HOURS integrator. From the figure, the HOURS integrator converges
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Figure 4.3: RMSD at t = 256 in zero force with a single auxiliary variable computed at various
∆t’s

to the expected value of MSD at long times, given by the desiderata listed in table 3.7. The

BAEOEAB integrator, on the other hand, converges to a line, but as time step is increased past

∆t = 1, the slope of the line increases, giving the wrong diffusion coefficient in long times.

Figure 4.3 further shows how far the BAEOEAB integrator deviates from the expected

MSD for large time steps. In this plot we graph root mean square deviation (RMSD) at t = 256

as a function of ∆t. While the HOURS integrator stays near the expected RMSD for all time

steps, the error of the BAEOEAB integrator quickly grows as time step grows.

The velocity and auxiliary variable distributions for both integrators preserve their statis-

tics for all ∆t, and, as shown in figure 4.4, velocities and auxiliary variables are Boltzmann

distributed across the entire simulation.
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Figure 4.4: Histograms of the distributions of velocity and auxiliary variables across the entire
simulation

4.1.5 Zero-force Two Auxiliary Variable Numerical Results

As done for the single auxiliary variable numerical experiments, we choose unit-less parameters

that are order 1, having m = kB = T = 1. We choose ω1 = 0.5, ω2 = 0.25, and ν1 = ν2 =

0.15625, which are chosen because they yield a rescaling parameter that is not close to 0 at time

steps equal to powers of two, and because they yield γ = 2, as in section 4.1.4.

Under these chosen parameters, the rescaling parameter has the form as shown in figure

4.5. As opposed to the one auxiliary variable case, the BAEOEAB integrator for two auxiliary

variables does not exactly solve the harmonic coupling update, which further increases error for

large ∆t.

For each simulation, we simulate 5000 particles to compute ensemble averages. Initial

positions are set to 0, while auxiliary and velocity variables are initialized to the Maxwell-

Boltzmann distribution, i.e. they have zero mean and variance kBT
m . Random seeds are not

fixed across simulations. At each time step, we run one simulation for each integrator, starting

from ∆t = 2e−3 and ranging to ∆t = 2e4, increasing time step by powers of 2. The final

time in each simulation is set to a fixed tF = 256. In figure 4.6, we plot the mean squared

displacement of the 5000 particles for each simulation as a function of time where the color

map describes the value of ∆t for the BAEOEAB integrator and for the HOURS integrator.

From the figure, the HOURS integrator converges to the expected value of MSD at long times,

given by the desiderata listed in table 3.7. Importantly, for small time steps, unique oscillatory

phenomena of the generalized Langevin equations are preserved by both the BAEOEAB and
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Figure 4.5: Rescaling parameter as a function of ∆t given ω1 = 0.5, ω2 = 0.25, and ν1 = ν2 =
0.15625

Figure 4.6: Log-log plot of MSD from BAEOEAB and HOURS with zero external force and
two auxiliary variables with various ∆t’s
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Figure 4.7: RMSD at t = 256 in zero force with two auxiliary variables computed at various
∆t’s

HOURS integrators. For large time steps, where this short timescale behavior is stepped over,

the HOURS integrator still converges to the correct long time asymptotic behavior.

Figure 4.7 further emphasizes this result, quantifying how far the BAEOEAB integrator

deviates from the expected root mean square deviation (RMSD). The plot shows the RMSD at

t = tF = 256, the final time in each simulation. While the HOURS integrator stays near the

expected RMSD for all time steps, the error of the BAEOEAB integrator quickly grows as the

time step grows.

4.2 One Dimension Harmonic Force Analysis

Consider the case of particles in one dimension with a quadratic potential (i.e. f(x) = −kx). We

write the matrix form of each update operator without the random variables in block notation

in table 4.3.
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O


1

1

θ

 V


1

− 1
2mkb∆t 1

I



E


1

P S⃗⊤

−S⃗ Q

 X


1 1

2b∆t

1

I


Table 4.3: Matrix form of update operators for quadratic potential

Unlike the one dimension zero force analysis conducted in section 4.1, the velocity and

auxiliary variables cannot be considered a separate subsystem than the position variables due to

the external force term in the deterministic velocity update V . However, we expect all variables

to converge to constants, and as such, can make relevant simplifications in the expectation value

equations.

In the case of one auxiliary variable, the HOURS integrator reduces exactly to BAEOEAB,

and as such, in the case of a harmonic force, has the exact same expectation values at long times.

Following [7] for one auxiliary variable, this gives MSD of kBT
mk , an MSV of kBT

m

(
1− b2∆t2k

4m

)
,

and a mean squared auxiliary variable of kBT
m , with all cross correlations being 0.

4.3 Properties of the Rescaling Parameter

Recall the rescaling parameter b given from equation 4.45

b =

√√√√√2 sin2
(
∥ω⃗∥∆t

2

)
∥ω⃗∥2∆t

(
M∑
k=1

ω2
k coth

(
νk∆t

2

))( M∑
k=1

ω2
k

νk

)−1

(4.47)

The rescaling parameter is generally well-behaved as a function of ∆t. Importantly, in

the limit as ∆t approaches 0, b approaches 1 for all choices of ωk and νk, which corresponds

to standard integrators from literature in the continuous limit. This can be determined simply

by L’Hôpital’s rule. Note, however, that the rescaling parameter is not necessarily less than or

equal to 1 for all values of ωk and νk. Sometimes, the rescaling parameter may be larger than

1. Even in these cases, where b slightly boosts the time step, the zero force diffusion coefficient

is preserved at long times.

Further, the analysis in section 4.1 has the conditions that cos
(
∥ω∥∆t

2

)
and sin

(
∥ω∥∆t

2

)
are non-zero, but the form of the derived rescaling parameter seems to only have ill-behavior

when sin
(
∥ω∥∆t

2

)
= 0, as, generally, under this condition the rescaling parameter gives b = 0.
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When cos
(
∥ω∥∆t

2

)
= 0, the rescaling parameter is near local maxima, and empirically does not

seem to yield poor behavior.

The rescaling parameter scales asymptotically as 1√
t
, and as such, by choosing local maxima

in b, can be used to improve computational efficiency of simulations. Indeed, the effective time

step for large ∆t in the position and force updates approaches
√
∆t.



Chapter 5

Conclusion and Future Work

In this thesis, we have introduced two modifications to existing integrators for the generalized

Langevin equations. First, we extend a splitting method proposed by [7] to exactly solve for the

coupling terms between velocity and the auxiliary bath variables. Second, we propose a time

step rescaling parameter b that allows nearly any time step to be chosen while still resolving the

long time statistics of the generalized Langevin equations by relaxing to the correct solution.

In this thesis, we have introduced two slight modifications to existing integrators for the

generalized Langevin equations. First, we extend a splitting method proposed by [7] to exactly

solve for the coupling terms between velocity and the auxiliary bath variables. Second, we

propose a time step rescaling parameter b that allows nearly any time step to be chosen while

still resolving the long time statistics of the generalized Langevin equations by relaxing to the

correct solution. We have shown that the proposed integrator recovers the expected long-time

statistics of the generalized Langevin equations in the white noise limit, and that the rescaling

parameter is well-behaved for most time steps, excluding discontinuities at periodic intervals.

In particular, it exactly converges to the correct mean squared velocity and mean squared bath

variables.

For future work, further investigation of the behavior of the exact harmonic solve is neces-

sary, as well as identifying properties of the rescaling parameters for practical use in molecular

dynamics simulations or in path sampling contexts. This calls for a more rigorous analysis of

the HOURS integrator for 2 or more auxiliary variables, and its applications to more complex

potentials and higher dimensions.

An important direction for future work is to extend the idea of integration by stochastic

relaxation to investigate other relaxation-type equations. This includes, but is not limited to,

magneto-hydrodynamics [24], and the Basset-Boussinesq-Oseen (BBO) equation [22]. The BBO

equation, in particular, is a convolution over the past velocities, which is a history effect that

46
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has been shown to be representable by a Prony series [22, 23], which closely aligns with the

memory kernel investigated in this work.

In this work, we have investigated corrections to long time dynamics. However, we have

no guarantee of recovering short time or intermediate time dynamics, for arbitrary choice of

time step. Preliminary results, such as those in figure 4.6, seem to suggest that intermediate

time dynamics are recovered with reasonable damping for arbitrary choice of time step. Further

investigation of this intermediate timescale behavior, and the investigation of predictor-corrector

type integrators that address this behavior, is left to future work.



Appendix A

Overview of Ornstein-Uhlenbeck

Processes

An Ornstein-Uhlenbeck process is a stochastic process originally used to describe the Langevin

equation, proposed by Ornstein and Uhlenbeck in a 1930 paper titled “On the Theory of Brow-

nian Motion” [25]. Its use evolved over time to be applied to financial mathematics and other

stochastic differential equations (SDEs).

A.1 Wiener Processes

A Wiener process is a continuous-time stochastic process that is often referred to simply as

Brownian motion. Any Wiener process Wt, indexed by nonnegative real numbers t, satisfies the

following four properties.

1. W0 = 0

2. W is continuous, i.e. Wt is continuous in t

3. Random variables defined by disjoint increments are independent; i.e. Wt+u − Wt is

independent of Ws −Ws−r for positive coefficients u and r where s < t

4. Increments are Gaussian, i.e. Wt+u−Wt is normally distributed with mean 0 and variance

u

A more general kind of stochastic process is the Lévy process, which has stationary and inde-

pendent increments that are not necessarily Gaussian.

48
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Figure A.1: Wiener process at different levels of spatial discretization

Intuitively, such a process can be thought of as the limit of random walks. Consider a

discrete and infinite series of independent and identically distributed (i.i.d.) random variables

Ni that have mean 0 and unit variance. For each n ≥ 1, we can define a continuous-time

stochastic process Wn(t) as

Wn(t) =
1√
n

⌊nt⌋∑
i=1

Ni (A.1)

which describes a random step function that has jumps scaled at size ± 1√
n
, where, by the central

limit, each interval Wn(t + u) − Wn(t) is close to the a normal distribution with mean 0 and

variance u. Indeed, in the limit as n → ∞, this continuous-time process approaches a Wiener

process.

As shown in figure A.1, Wiener processes are characterized by producing the same statistics

over intervals independent of spatial resolution. As a consequence, many important properties

of dynamic systems that have Wiener processes are independent of sampling density. It is im-

portant to remember that despite the fractal-like behavior of samplings from Wiener processes,

a Wiener process is still continuous.
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A.2 Ornstein-Uhlenbeck Processes

Using notation from Itô calculus, an Ornstein-Uhlenbeck (OU) process xt is defined by the

following SDE

dxt = −θxtdt+ σdWt (A.2)

where θ > 0 and σ > 0 are parameters of the differential equation, and Wt is a Wiener process

as described in section A.1. Here, if we consider xt to describe the velocity of a particle, θ

describes the average tendency of the velocity to return to equilibrium, and σ describes the

magnitude of perturbation by a standard Wiener process. More realistically, when there are

external forces or there exists an external potential, the velocity experiences a mean drift, which

can be characterized by a natural extension to the OU process as

dxt = θ(µ− xt)dt+ σdWt (A.3)

having a constant µ characterize the drift. Written in standard notation, the Ornstein-Uhlenbeck

process is equivalent to a Langevin equation in the form

dxt
dt

= −θxt + ση(t) (A.4)

where η(t) is a white noise process that replaces the derivative dWt
dt , which does not exist as the

Wiener process is nowhere differentiable [26]. Instead, we take advantage of the fact that the

Wiener process has intervals that are Gaussian distributed with zero mean and variance equal

to the change in time along the interval.

A.2.1 Exact Solution

The exact solution of an Ornstein-Uhlenbeck process, as it is a first-order differential equation,

can be computed using methods such as variation of parameters [27]. This gives the exact

solution as

xt = x0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s)dWs (A.5)

which has mean

E[xt] = x0e
−θt + µ

(
1− e−θt

)
(A.6)

and covariance given by the Itô isometry

cov[xs, xt] =
σ2

2θ

(
e−θ|t−s| − e−θ(t+s)

)
(A.7)



Appendix A Overview of Ornstein-Uhlenbeck Processes 51

Figure A.2: Three simulated Ornstein-Uhlenbeck processes having θ = 1, µ = 2, and σ =
√
2

and the expected value of the solution

It follows then, as the Itô integral of a deterministic integrand is normally distributed, that

xt = x0e
−θt + µ

(
1− e−θt

)
+

σ√
2θ

W1−e−2θt (A.8)

For example, in figure A.2, we show the expected value of the solution along with 3 sim-

ulations of Ornstein-Uhlenbeck processes, having θ = 1, µ = 2, and σ =
√
2. Notably, as θt

grows large, e−θt becomes arbitrarily small, and the process converges to a white noise process

centered around µ.



Appendix B

Overview of Strang Splitting

Methods

Strang splitting is a numerical method for solving linearly decomposable differential equations,

first introduced by Strang in 1968 [28]. The idea of operator splitting is to reduce the complexity

required in handling the sums of n differential operators into some aggregate of n solutions for

each differential operator. Ultimately, this simplifies the process of obtaining a solution for the

original differential equation, as long as each splitting can be solved simply.

As a motivating example, first consider an ODE in the form

ẋ = L1(x) + L2(x) (B.1)

where x can be scalar or vector valued, and L1 and L2 are differential operators, or in the case

of physical systems, sometimes termed the Liouville operator or Liouvillian [9]. If L1 and L2

are constant coefficient matrices, then the exact solution is

x(t) = e(L1+L2)tx0 (B.2)

If L1 and L2 commute, then this solution can naturally be split as eL1teL2t. If they do not

commute, then by the Baker-Campbell-Hausdorff formula, the cost of such a split comes at

second order error

e(L1+L2)t = eL1teL2t +O(t2) (B.3)

which has O(∆t) accuracy when applied as a numerical scheme, replacing t with ∆t. Instead,

Strang proposed a splitting by half-step, which can be proved to be second order by Taylor

expansion.

x(t) ≈ eL1
∆t
2 eL2∆teL1

∆t
2 (B.4)

52
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This splitting naturally extends to arbitrary numbers of differential operators Lk, and produces

a technique that is generalizable to any number of dimensions as well.
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