
Inspired by the work done by [Proctor, 2018] and 
contributors, we adopt a Koopman theoretic approach to 
data-driven dynamics. Given a dynamical system

1. Solve for the continuous-time passive system

2. Solve the discrete-time perturbations due to control inputs

3. Propagate forward in time

Soft robotics are capable of producing biocompatible motions 
that are conformable to humanlike functions, and as such, are 
more capable of safely working alongside humans. Existing 
methods require large amounts of data to be able to have high 
enough accuracy for control. To address this, we propose a 
physics-informed data-driven method that has higher accuracy 
in the low-data limit than existing methods.
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Forward simulation is the first step towards being able to 
control a continuum robot. As Koopman theoretic approaches 
have ideal properties in terms of identifying optimal control 
inputs, we hope to, in the near future:
● Develop a control algorithm using the developed method
● Construct a physical prototype for validating this method
 

Overall, our method, Physics-Informed Extended Dynamic 
Mode Decomposition with Control (PI-EDMDc), is able to 
effectively estimate forward in time even in the low-data limit.

We have shown:
● Improved accuracy in

the low-data limit
(2 orders of magnitude)

● Improved generalization
performance in the
low-data limit

● Effective simulation of
realistic cable driven
soft robots (such as in
Figure 6)

● High applicability of the
method to a variety of
systems

Figure 6: Multi-section tendon robot 
used in surgical settings. Adapted from 

[Li, 2017]

Slow Manifold Example [Proctor, 2018]
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Figure 3: a) Mean squared error as a function of training set size. b) A sample 
trajectory of 10000 steps with predicted trajectories trained on 2048 data points. 

Figure 4: a) Mean squared error as a function of training set size. b) Performance of 
PI-EDMDc compared to bilinear EDMDc over 1000 steps trained on 1024 data points.

Tendon Robot with Flexible Backbone
Simulations are conducted as in [Till, 2019]

Figure 1: A simple schematic of a continuum robot 
undergoing actuation. Adapted from [Wei, 2018]

Figure 2: Dynamics in the lifted space. From [Proctor, 2018]

Method
Dictionary 

for state

Dictionary for 

state and control

# of 

Functions

Bilinear 

EDMDc N/A

Order 3 

polynomials 193

Linear 

EDMDc N/A

Order 3 

polynomials 193

PI-EDM

Dc

Order 3 

polynomials

Identity function 

over control 44

Method
Dictionary for 

state

Dictionary for state 

and control

# of 

Functions

Bilinear 

EDMDc N/A

Random Fourier 

(RF), γ=1 204

Linear 

EDMDc N/A RF, γ=1 204

PI-EDMDc RF, γ=1 Order 1 monomials 332

Figure 7: Experimental setup for a soft robot. 
Adapted from [Bruder, 2019]

Figure 5: a) Simulated rendering of tendon robot. b) Performance of PI-EDMDc 
compared to the ground truth trained on 15,000 data points.


