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Eron Ristich, Computer Science SU Rl
Mentor: Jiefeng Sun, Assistant Professor

School for Engineering of Matter, Transport and Energy

Introduction Numerical Results Discussion and Conclusions

Soft robotics are capable of producing biocompatible motions ~ Slow Manifold Example [Proctor, 2018] 10" RyT— 10 — Overall, our method, Physics-Informed Extended Dynamic
that are conformable to humanlike functions, and as such, are q 2 — ;ém 0.75 g = Sffugg&fgth Mode Decomposition with Control (PI-EDMDc), is able to
more capable of safely working alongside humans. Existing = [ _ HL1 + 0 U 2 /\ L. EDMDc effectively estimate forward in time even in the low-data limit.
methods require large amounts of data to be able to have high dt |2 Az — a7) 0 2 10 \ o0 T
= ' 2 We have shown: i "}
- S T 025 S
enou.gh ?Ccuracy ol ContI:OL To address this, we p?ropose a Dictionary Dictionary for # of 2 1072 \ # ® |mproved accuracy in P Section 2 O n=2
physics-informed data-driven method that has higher accuracy Method : c 0.00 . Tendon Knots
i the | data limit th <t thod for state state and control Functions s the low-data limit
in the low-data limit than existing methods. -4 : n=
- = & Bilinear Order 2 10 -0.25 (2 orders of magnitude) 0 :
= EDMDc N/A monomials 5 6 P e Improved generalization section 1
Linear Order 2 ° 2’ 2’ 2 2’ 2 2" R R Gel on PR performance in the a
EDMDc N/A monomials 5 irainingsekstze S low-data limit 0
- /Y n=6
P| Order 2 Identity function Figure 3: a) Mean squared error as a function of training set size. b) A sample e FEffective simulation of  Base —
EDMDc monomials over control 6 trajectory of 10000 steps with predicted trajectories trained on 2048 data points. realistic cable driven "E 0 -
- soft robots (such as in fendons
. 10 1000 i (a) (b)
Heat Equation a|ong a Rod : —— BL.EDMDc ;| — Ground Truth Flgl:]re 6)| i -
L. EDMDc ' B.L. EDMDc ® H| | | | i . - i
. . | | , 10 e | e sy - gh applica t.yo the Flgure 6 Multl secjclon tendon robot
Figure 1: A simple schematic of a continuum robot o, 1 o, 5 5 2 - method to a variety of  used in surgical settings. Adapted from
undergoing actuation. Adapted from [Wei, 2018] au(w, t) = o2 u(z,t) + 9 sin(wz) g 19 © . systems [Li, 2017]
1 >
2 10 © 2,
. . © =00 o
Mathematical Formulation Viathog Dictionary  Dictionary for  # of 3 o0 s S— 0n 7 Future Work
for state state and control Functions & 2 os \§§ =
Inspired by the work done by [Proctor, 2018] and Bilinear Order 3 2 10 e \& ‘ Forward simulation is the first step towards being able to
: : | 200 : :
contnbgtors, we ao!opt a. Koopman thfeoretlc approach to EDMDc  N/A polynomials 193 2 - -~ control a continuum robot. As Koopman theoretic approaches
data-driven dynamics. Given a dynamical system Linear Order 3 3 | 5 have ideal properties in terms of identifying optimal control
. 10 . : .
x = f(x) + h(x, u) EDMDc  N/A polynomials 193 o ' 2 ¥ " PP : e e 2 = inputs, we hope to, in the near future:
1. Solve for the continuous-time passive system PI-EDM Order3 Identity function | 1aintng cetetze | N | y EePei el Bl TR ST o S ele
[l J(X)@T (X) Dc solynomials over control 14 Figure 4: a) Mean squarep! error as a function of training sgt size. b) Performancg of e Construct a physical prototype for validating this method
1 -— PI-EDMDc compared to bilinear EDMDc over 1000 steps trained on 1024 data points. ode
. . . . ode
2. Solve the discrete-time perturbations due to control inputs Tendon Robot with Flexible Backbone 36 : PR
—~ (Lamera z|k + 1] = Az|k| + Bu
. . . . ! 4 qs‘ \ gl zlk| =9 (x
[:2 L= (@(X/) — €At£1) @T(X, U) Simulations are conducted as in [Till, 2019] 05 s N —— | S e
3. Propagate forward in time ps = Rv, p; = Rq m; = Oi(RpJw) — psn —1 0.4 0.6 B27 | ‘,h:ressur:;::: - = g
A R, = Ru, R, — Rw g; — v; — uq + Wv 03 82 Regulators £ MCRY =
@(Xk+1) ~ 6Atﬁ1 @(Xk) kS €At£1 / te—T/:l ﬁz@(xka uk)dT ns = pAR (Gq—l— Qt) — f W, = U — UW ‘i’ 5.5 : 0.3 % : B Foam Exterior ‘ C (Linean
0 o " — ' 0.2 18.0 _ Foam SDi
S Dictionary for Dictionary for state # of o ; 01 7 ‘ | SIS )= Flou®) |
R state and control Functions . ) 0.0 | 5 ave | ARSI R
N ) | 0.3 e S 8
ifl.z_ ______ ‘y3 ‘yN Bilinear / I(Ran)dom Fourier 0.2 | - Ground Truth | 2 9 T T - . 5 x“@ﬂﬁy
K,: y ) EDMDc  N/A RF), y=1 204 : 0.3 _ . D\ X <] = S
ylﬁ Linear y (M) 0.2 -0.2 | 0.1 ~0.2 — | 4 e ,
1 ... X (m) 0.2 0.3—0.3 5 e (Nonlinear)
EDMDc N/A RF, y=1 204 i 7. E _ | : ¢ b
_ o . Figure 5: a) Simulated rendering of tendon robot. b) Performance of PI-EDMDc Hedre 7 xperlmfenta setup Tor a soft robot.
Figure 2: Dynamics in the lifted space. From [Proctor, 2018] PI-EDMDc RF, y=1 Order 1 monomials 332 compared to the ground truth trained on 15,000 data points. Adapted from [Bruder, 2019]

References

J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing Koopman Theory to Allow for Inputs and Control,” SIAM

Ira A- FU'ton SChOO|S Of = Pl — ) Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 909-930, Jan. 2018.
= = RO DOUC Chebdla e L Bty J. Till, V. Aloi, and C. Rucker, “Real-time dynamics of soft and continuum robots based on Cosserat rod models,” The
‘ | ) o ot 3t 0 =X International Journal of Robotics Research, vol. 38, no. 6, pp. 723-746, May 2019.
n g I n ee rl n g :’:,:2553375 f’:::“;; Z. Li, L. Wu, H. Ren, and H. Yu, “Kinematic comparison of surgical tendon-driven manipulators and concentric tube
= oL s B gt S, manipulators,” Mechanism and Machine Theory, vol. 107, pp. 148-165, Jan. 2017.

Wei, Y., Ma, Y. & Zhang, W. A multi-jointed underactuated robot hand with fluid-driven stretchable tubes. Robot.

: . - — Ma,
Arizona State University Siomim. 5, 2 2015).
D. Bruder, B. Gillespie, C. David Remy, and R. Vasudevan, “Modeling and Control of Soft Robots Using the Koopman

Operator and Model Predictive Control,” Robotics: Science and Systems XV, Jun. 2019



